ÔN TẬP CHƯƠNG I

ÔN TẬP CHƯƠNG I

Bài 33 (trang 93 SGK Toán 9 Tập 1): Chọn kết quả đúng trong các kết quả dưới đây:

a) Trong hình 41, sin α bằng:

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Trong hình 42, sin Q bằng:

Để học tốt Toán 9 | Giải bài tập Toán 9

c) Trong hình 43, cos 30o bằng:

Để học tốt Toán 9 | Giải bài tập Toán 9

Lời giải:

a) Chọn C

b) Chọn D

c) Chọn C vì:

Để học tốt Toán 9 | Giải bài tập Toán 9

 Bài 34 (trang 93 SGK Toán 9 Tập 1): 

a) Trong hình 44, hệ thức nào trong các hệ thức sau là đúng?

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Trong hình 45, hệ thức nào trong các hệ thức sau không đúng ?

(A) sin2α + cos2α = 1

(B) sin α = cos β

(C) cos β = sin (90o – α)

Để học tốt Toán 9 | Giải bài tập Toán 9

 

Lời giải:

a) Chọn C

b) Chọn C sai

– Vì đẳng thức đúng phải là: cos β = sin(90o – β)

Bài 35 (trang 94 SGK Toán 9 Tập 1): Tỉ số giữa hai cạnh góc vuông của một tam giác vuông bằng 19: 28. Tìm các góc của nó.

Lời giải:

Để học tốt Toán 9 | Giải toán lớp 9

Kí hiệu góc như trên hình vẽ.

Tỉ số giữa hai cạnh góc vuông của một tam giác vuông là tg của góc nhọn này và là cotg của góc nhọn kia.

Giả sử α là góc nhọn của tam giác vuông đó.

 

Ta có:

Để học tốt Toán 9 | Giải toán lớp 9

=> α ≈ 34o10′

=> β ≈ 90o – 34o10′ = 55o50′

(Lưu ý: Bạn cũng có thể sử dụng cotg để tính, nhưng cũng sẽ cho kết quả tương tự bởi vì tính chất lượng giác của 2 góc phụ nhau.)

 

 Bài 36 (trang 94 SGK Toán 9 Tập 1): Cho tam giác có một góc bằng 45o. Đường cao chia một cạnh kề với góc đó thành các phần 20cm và 21 cm. Tính cạnh lớn trong hai cạnh còn lại (lưu ý có hai trường hợp hình 46 và hình 47).

Để học tốt Toán 9 | Giải bài tập Toán 9

Lời giải:

Để học tốt Toán 9 | Giải bài tập Toán 9

– Trường hợp hình 46: cạnh lớn trong hai cạnh còn lại được kí hiệu là x.

ΔHAB cân vì có ∠B = 45o

=> HA = HB = 20

Áp dụng định lí Pitago trong ΔHAC có:

x2 = AC2 = HA2 + HC2 = 202 + 212 = 841

=> x = 29 hay độ dài cạnh lớn trong hai cạnh còn lại là 29.

– Trường hợp hình 47: cạnh lớn trong hai cạnh còn lại được kí hiệu là y.

ΔH’A’B’ cân vì có ∠B’ = 45o

=> H’A’ = H’B’ = 21

Áp dụng định lí Pitago trong ΔH’A’B’ có:

y2 = A’B’2 = H’A’2 + H’B’2 = 212 + 212 = 2.212

=> y = 21√2 ≈ 29,7 hay độ dài cạnh lớn trong hai cạnh còn lại là 29,7.

Bài 37 (trang 94 SGK Toán 9 Tập 1): Cho tam giác ABC có AB = 6cm, AC = 4,5cm, BC = 7,5cm.

a) Chứng minh tam giác ABC vuông tại A. Tính các góc B, C và đường cao AH của tam giác đó.

b) Hỏi rằng điểm M mà diện tích tam giác MBC bằng diện tích tam giác ABC nằm trên đường nào?

Lời giải:

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Ta có: AB2 + AC2 = 62 + 4,52 = 7,52 = BC2

nên tam giác ABC vuông tại A. (đpcm)

Để học tốt Toán 9 | Giải bài tập Toán 9

=> ∠B = 37o

=> ∠C = 90o – ∠B = 90o – 37o = 53o

Mặt khác trong tam giác ABC vuông tại A, ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

=> AH = 3,6 cm

b) Gọi khoảng cách từ M đến BC là MK. Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

Ta thấy SMBC = SABC khi MK = AH = 3,6 cm

Do đó để SMBC = SABC thì M phải nằm trên đường thẳng song song và cách BC một khoảng là 3,6 cm (có hai đường thẳng như trên hình).

 Bài 38 (trang 95 SGK Toán 9 Tập 1): Hai chiếc thuyền A và B ở vị trí được minh họa như trong hình 48. Tính khoảng cách giữa chúng (làm tròn đến mét).

Để học tốt Toán 9 | Giải bài tập Toán 9Hình 48

Lời giải:

Trong tam giác vuông BIK có:

IB = IK.tg ∠IKB = IK.tg(50o + 15o) = 380.tg 65o ≈ 814 (m)

Trong tam giác vuông AIK có:

IA = IK.tg ∠IKA = IK.tg 50o = 380.tg50o ≈ 452 (m)

Vậy khoảng cách giữa hai thuyền là:

AB = IB – IA = 814 – 452 = 362 (m)

 

Bài 39 (trang 95 SGK Toán 9 Tập 1): Tìm khoảng cách giữa hai cọc để căng dây vượt qua vực trong hình 49 (làm tròn đến mét)

Để học tốt Toán 9 | Giải bài tập Toán 9Hình 49

Lời giải:

Để học tốt Toán 9 | Giải bài tập Toán 9

Kí hiệu như hình vẽ. Theo hệ thức giữa cạnh và góc của tam giác vuông:

Trong tam giác vuông ABC:

 AB = AC tan 50o = 20.tan 50o = 23,83 m

=> BD = 20tan50o – 5 = 18,83 m

Trong tam giác vuông BHD:

Để học tốt Toán 9 | Giải bài tập Toán 9

Vậy khoảnh cách giữa hai cọc là 24,59 m.

Bài 40 (trang 95 SGK Toán 9 Tập 1): Tính chiều cao của cây trong hình 50 (làm tròn đến đề-xi-mét)

Để học tốt Toán 9 | Giải bài tập Toán 9Hình 50

Lời giải:

Kí hiệu như hình vẽ.

Để học tốt Toán 9 | Giải bài tập Toán 9

Trong tam giác vuông ABC có:

BA = AC.tan35o = 30.tan35o ≈ 21 (m)

Chiều cao của cây là:

BH = BA + AH ≈ 21 + 1,7 ≈ 22,7 (m)

Vậy chiều cao của cây là 22,7 (m) (hoặc = 227 dm).

(Ghi chú: Bạn cũng có thể làm tắt hơn như sau:

Chiều cao của cây là:

BH = BA + AH = AC.tan35o + AH = 30.tan35o + 1,7 = 22,7 m)

Bài 41 (trang 96 SGK Toán 9 Tập 1): Tam giác ABC vuông tại C có AC = 2cm, BC = 5cm, ∠BAC = x, ∠ABC = y. Dùng các thông tin sau (nếu cần) để tìm x – y:

        sin23o36′ ≈ 0,4

        cos66o24′ ≈ 0,4

        tg21o48′ ≈ 0,4

Lời giải:

Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

Suy ra y = 21o48′

=> x = 90o – y = 68o12′ (x, y là hai góc phụ nhau)

Vậy x – y = 68o12′ – 21o48′ = 46o24′

 Bài 42 (trang 96 SGK Toán 9 Tập 1): Ở một cái thang dài 3m người ta ghi: “Để đảm bảo an toàn khi dùng thang, phải đặt thang này tạo với mặt đất một góc có độ lớn từ 60o đến 70o“. Đo góc thì khó hơn đo độ dài. Vậy hãy cho biết: Khi dùng thang đó chân thang phải đặt cách tường khoảng bao nhiêu mét để đảm bảo an toàn?

Lời giải:

Để học tốt Toán 9 | Giải bài tập Toán 9

Kí hiệu như hình vẽ.

Trong tam giác vuông ABC có:

        AC = BC.cosC = 3.cosC

Vì phải đặt thang tạo với mặt đất một góc 60o đến 70o nên

    60o ≤ ∠C ≤ 70o

=> cos 70o ≤ cosC ≤ cos 60o

=> 3.cos 70o ≤ 3.cosC ≤ 3.cos 60o

=> 1,03 ≤ AC ≤ 1,5

Vậy phải đặt chân thang cách tường từ 1,03 m đến 1,5 m.

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *