Bài 1: Căn bậc hai

Bài 1: Căn bậc hai

Bài 1 (trang 6 SGK Toán 9 Tập 1): Tìm căn bậc hai số học của mỗi số sau rồi suy ra căn bậc hai của chúng:

        121; 144; 169; 225; 256; 324; 361; 400

Lời giải:

Ta có: √121 = 11 vì 11 > 0 và 11²= 121 nên

Căn bậc hai số học của 121 là 11. Căn bậc hai của 121 là 11 và – 11.

Tương tự:

Căn bậc hai số học của 144 là 12. Căn bậc hai của 144 là 12 và -12.

Căn bậc hai số học của 169 là 13. Căn bậc hai của 169 là 13 và -13.

Căn bậc hai số học của 225 là 15. Căn bậc hai của 225 là 15 và -15.

Căn bậc hai số học của 256 là 16. Căn bậc hai của 256 là 16 và -16.

Căn bậc hai số học của 324 là 18. Căn bậc hai của 324 là 18 và -18.

Căn bậc hai số học của 361 là 19. Căn bậc hai của 361 là 19 và -19.

Căn bậc hai số học của 400 là 20. Căn bậc hai của 400 là 20 và -20.

Bài 2 (trang 6 SGK Toán 9 Tập 1): So sánh:

  1. a) 2 và √3 ;     b) 6 và √41 ;     c) 7 và √47

Lời giải:

  1. a) 2 = √4

Vì 4 > 3 nên √4 > √3 (định lí)

Vậy 2 > √3

  1. b) 6 = √36

Vì 36 < 41 nên √36 < √41

Vậy 6 < √41

  1. c) 7 = √49

Vì 49 > 47 nên √49 > √47

Vậy 7 > √47

Bài 3 (trang 6 SGK Toán 9 Tập 1): Dùng máy tính bỏ túi, tính giá trị gần đúng của nghiệm mỗi phương tình sau (làm tròn đến chữ số thập phân thứ ba):

  1. a) x2= 2 ;         b) x2= 3
  2. c) x2= 3,5 ;         d) x2= 4,12

Hướng dẫn: Nghiệm của phương trình x2 = a ( với a ≥ 0) là các căn bậc hai của a.

Lời giải:

  1. a) x2= 2 => x1= √2 và x2 = -√2

Dùng máy tính bỏ túi ta tính được:

    √2 ≈ 1,414213562

Kết quả làm tròn đến chữ số thập phân thứ ba là:

x1 = 1,414; x2 = – 1,414

  1. b) x2= 3 => x1= √3 và x2 = -√3

Dùng máy tính ta được:

    √3 ≈ 1,732050907

Vậy x1 = 1,732; x2 = – 1,732

  1. c) x2= 3,5 => x1= √3,5 và x2 = -√3,5

Dùng máy tính ta được:

    √3,5 ≈ 1,870828693

Vậy x1 = 1,871; x2 = – 1,871

  1. d) x2= 4,12 => x1= √4,12 và x2 = -√4,12

Dùng máy tính ta được:

    √4,12 ≈ 2,029778313

Vậy x1 = 2,030 ; x2 = – 2,030

Bài 4 (trang 7 SGK Toán 9 Tập 1): Tìm số x không âm, biết:

  1. a) √x = 15;         b) 2√x = 14
  2. c) √x < √2;         d) < 4

Lời giải:

Lưu ý: Vì x không âm (x ≥ 0) nên các căn thức trong bài đều xác định.

  1. a) √x = 15

Vì x ≥ 0 nên bình phương hai vế ta được:

x = 152 ⇔ x = 225

Vậy x = 225

  1. b) 2√x = 14 ⇔ √x = 7

Vì x ≥ 0 nên bình phương hai vế ta được:

x = 72 ⇔ x = 49

Vậy x = 49

  1. c) √x < √2

Vì x ≥ 0 nên bình phương hai vế ta được: x < 2

Vậy 0 ≤ x < 2

  1. d) 

Vì x ≥ 0 nên bình phương hai vế ta được:

2x < 16 ⇔ x < 8

Vậy 0 ≤ x < 8

Bài 5 (trang 7 SGK Toán 9 Tập 1): Đố. Tính cạnh một hình vuông, biết diện tích của nó bằng diện tích của hình chữ nhật có chiều rộng 3,5m và chiều dài 14m.

Lời giải:

Diện tích hình chữ nhật: SHCN = 3,5.14 = 49 (m2)

Gọi a (m) (a > 0) là độ dài của cạnh hình vuông. Suy ra diện tích hình vuông là

SHV = a2 = 49 (m2)

=> a = 7 (m)

Vậy cạnh hình vuông có độ dài là 7m.

Ghi chú: Nếu ta cắt đôi hình chữ nhật thành hai hình chữ nhật có kích thước 3,5m x 7m thì ta sẽ ghép được hình vuông có cạnh là 7m.

 

 

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *