Bài 2: Đường kính và dây của đường tròn

Bài 2: Đường kính và dây của đường tròn

Bài 10 (trang 104 SGK Toán 9 Tập 1): Cho tam giác ABC, các đường cao BD và CE. Chứng minh rằng:

a) Bốn điểm B, E, D, C cùng thuộc một đường tròn.

b) DE < BC.

Lời giải:

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Gọi M là trung điểm của BC.

Để học tốt Toán 9 | Giải bài tập Toán 9

=> ME = MB = MC = MD

Do đó bốn điểm B, E, D, C cùng thuộc đường tròn tâm M. (đpcm)

b) Trong đường tròn tâm M nói trên, ta có DE là dây, BC là đường kính nên DE < BC.

Bài 11 (trang 104 SGK Toán 9 Tập 1): Cho đường tròn (O) đường kính AB, dây CD không cắt đường kính AB, Gọi H và K theo thứ tự là chân các đường vuông góc kẻ từ A và B đến CD. Chứng minh rằng CH = DK.

Gợi ý: Kẻ OM vuông góc với CD.

Lời giải:

Để học tốt Toán 9 | Giải bài tập Toán 9

Kẻ OM ⊥ CD.

Vì AH // BK (cùng vuông góc HK) nên tứ giác AHKB là hình thang.

Hình thang AHKB có:

    AO = OB (bán kính).

    OM // AH // BK (cùng vuông góc HK)

=> OM là đường trung bình của hình thang.

=> MH = MK         (1)

Vì OM ⊥ CD nên MC = MD     (2)

Từ (1) và (2) suy ra CH = DK. (đpcm)

 

Trả lời

Thư điện tử của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *